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ABSTRACT

Purpose: The aim of the paper is to compare the corrosion properties of two high-Mn austenitic 
steels with various Al and Si additions in 0.1M NaOH solution using a potentiodynamic method.

Design/methodology/approach: The steels used for the investigation were thermo-
mechanically rolled in 3 passes. The final thickness of about 2 mm was obtained at a 
temperature of 850°C. Three groups of samples were prepared: thermomechanically rolled, 
thermomechanically rolled and additionally annealed at 900°C for 20 min, thermomechanically 
rolled and additionally cold deformed in static tensile test to total elongation of 36%. Corrosion 
resistance of investigated steels was examined using the potentiodynamic method. The 
metallographic inspection of corrosion damage included scanning electron microscope 
observations. The chemical analyses of the corrosion pits were carried out using EDS techniques.

Findings: It was found that X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 steels were 
characterized by relatively high corrosion resistance in 0.1M NaOH solution independently 
of their state. EDS analysis revealed that corrosion pits nucleated preferentially at non-
metallic inclusions such as MnS and AlN. Results of potentiodynamic tests showed that cold 
deformation had the highest influence on decreasing the corrosion resistance of investigated 
steels. Thermomechanically treated and supersaturated specimens showed lower values of 
corrosion current density and consequently less amount of corrosion damage.

Research limitations/implications: To investigate in more detail the corrosion 
behaviour of high-manganese austenitic steels, the impedance spectroscopy investigations 
will be carried out.

Practical implications: The knowledge of the corrosion resistance of high-Mn steels has 
a significant effect on their industrial application in the automotive industry.

Originality/value: The corrosion resistance of two high-manganese austenitic steels with 
different initial microstructures was compared in alkaline solution.

Keywords: Corrosion resistance; High-manganese steel; Non-metallic inclusion; 
Potentiodynamic test; Pitting corrosion

Reference to this paper should be given in the following way: 

A. Kozłowska, A. Grajcar, Effect of chemical composition and plastic deformation on 
corrosion properties of high-Mn austenitic steels in alkaline solution, Archives of Materials 
Science and Engineering 77/1 (2016) 31-39.
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1. Introduction 
 
High-manganese austenitic steels belong to the second 

generation of advanced high strength steels (AHSS) 

dedicated for automotive industry. These steels are being 

developed as structural material due to their superior 

combination of strength, ductility and crashworthiness. 

Their applications include different structural elements 

with a complicated shape used in the crumple zones of cars 

[1-4]. In addition to the automotive industry the high-Mn 

steels can be used as replacements for traditional Cr-Ni 

steels for transportation of liquid gases due to their high 

strength and toughness at cryogenic temperatures. 

Excellent mechanical properties are related to homogenous 

austenitic microstructure. These steels contain manganese 

(15-30%) which is known as a major austenite stabilizer. 

The other alloying elements like aluminium and silicon 

also play a role in the physical and mechanical behaviour 

of high-manganese steels. Silicon and aluminium additions 

provide solid solution strengthening. Microadditions of Nb 

and Ti are added for precipitation strengthening and grain 

refinement [5]. Manufacturing methods of high-manganese 

steels consist of hot-rolling and successive cooling to room 

temperature [6]. 

Chemical composition, heat treatment and plastic 

deformation as well as a type of corrosive media have 

significant effects on the corrosion properties of high-Mn 

steels. It was found that additions of Al, Cr, Cu and Mo 

improve corrosion resistance of these steels due to the 

passive film formation on a steel surface. Silicon addition 

has a negative effect on the corrosion resistance of steels 

[7,8]. Our previous studies [9,10] demonstrated that a pre-

sence of sulfide compounds, especially MnS inclusions, 

affects the corrosion resistance of steel by providing pitting 

sites. The same effect was observed in stainless steels by 

other authors [11-13]. Manganese occurs also with silicon 

and aluminium additions characterized by high affinity to 

oxygen (aluminium also to nitrogen). Results of our pre-

vious works [9,10] showed that corrosion pits were formed 

at complex inclusions such as MnS+AlN, oxysulphides 

containing Mn, Al, N, Si and oxides containing Mn, Al, Si.  

A type of corrosive medium affects corrosion resistance 

of steels. It was reported that high-Mn steels show the 

lowest corrosion resistance in solutions of pH about 1 [14-

16]. These steels are less sensitive to corrosion attack in 

solutions of pH about 14. In our previous works [17-19] we 

reported that high-Mn austenitic steels showed higher 

corrosion current density during potentiodynamic polari-

zation tests in 0.1M H2SO4 than in 3.5% NaCl solution. 

Opiela et al. [20] observed the presence of numerous 

corrosion pits formed in steels after corrosion tests in both 

solutions. Better corrosion resistance of high-Mn steels in 

3.5% NaCl is related to the passivation ability of 

aluminium, i.e., formation of stable Al2O3 films on the steel 

surface in solution characterized by pH about 7. The lowest 

corrosion resistance of investigated steels in acidic solution 

can be explained by non-passivating tendency of alumi-

nium in this medium in addition to the intensive manganese 

and iron dissolution. 

Heat treatment conditions and plastic deformation have 

also a significant effect on microstructure and mechanical 

properties of steels [21-24]. Up to now a lot of studies on 

AHSS steels concerned their hot-working behavior [6,25-

30]. Less attention has been focused on relations between  

a type of heat treatment, plastic deformation and corrosion 

properties of high-Mn steels. Nowadays, a few reports on 

relations between cold deformation of high-Mn steels and 

their corrosion resistance are available [18,31,32]. Ghayad 

et al. [31] found that cold working increases the corrosion 

rate due to deformation twins formed upon deformation. 

The twins represent regions characterized by different 

potential from the matrix and this leads to the increase in 

the corrosion current density. Results of our previous 

works [9,10] confirmed that corrosion pits nucleated 

mainly at grain boundaries and deformation bands in cold 

deformed steels. Corrosion resistance of grain boundaries is 

poor because of high dislocation density present at these 

regions [17,33]. The same effect was observed in stainless 

steels [34]. Grain size influences the corrosion behaviour 

too. A result of the plastic deformation can be the forma-

tion of  or/and ’ martensities. It was reported [32,35] that 

the corrosion progress is accelerated when the amount of 

the martensite increases. 

This study contains comparative investigations of the 

corrosion properties of two high-Mn steels in three 

different states (hot deformed, supersaturated and cold 

strained) in 0.1M NaOH. 

 

 

2. Experimental 
 

Examinations were carried out on two vacuum-melted 

high-Mn steels with the chemical composition presented in 

Table 1. The steels are characterized by similar C and Mn 

content (major austenite stabilizers). The main differences 

in chemical composition of investigated steels are related to 

the silicon and aluminium contents. The chemical 

behaviour of those elements is opposite. Aluminium can 

improve corrosion resistance of steel due to the passive 

film forming tendency on a steel surface, whereas silicon 

1.  Introduction

2.  Experimental
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Table 2. 

Average values of electrochemical polarization data of 

thermomechanically rolled, supersaturated and cold worked 

steels registered in the 0.1M NaOH solution 

Material Type of  treatment 

0.1M NaOH 

Ecorr 

mV 

Icorr 

mA/cm2 

X4MnSiAlNbTi

27-4-2 

thermomechanically  

rolled 
-355 0.007 

X6MnSiAlNbTi

26-3-3 

thermomechanically  

rolled 
-352 0.005 

X4MnSiAlNbTi

27-4-2 
supersaturated -430 0.03 

X4MnSiAlNbTi

27-4-2 
cold worked -398 0.09 

X6MnSiAlNbTi

26-3-3 
cold worked -420 0.06 

 

 

Fig. 5. Selected potentiodynamic polarization curves of the 

thermomechanically treated (a) and cold deformed (b) 

X4MnSiAlNbTi27-4-2 (1) and X6MnSiAlNbTi26-3-3 (2) 

steels  registeted in 0.1M NaOH solution 

 
Fig. 6. Selected potentiodynamic polarization curves of the 

supersaturated X4MnSiAlNbTi27-4-2 steel obtained in 

0.1M NaOH solution 

 

were: -355 mV and -352 mV respectively for X4MnSiAl-

NbTi27-4-2 and X6MnSiAlNbTi26-3-3 steels. 

Results collected for cold deformed specimens are 

shown in Fig. 5b. Cold deformation increased the corrosion 

current density to approximately 0.09 mA/cm2 – for the  

27-4-2 steel and to 0.06 mA/cm2 for the 26-3-3 steel. The 

values of corrosion potentials were: -398 mV and -420 mV 

for the steels containing lower and higher Al content, 

respectively. It is documented in literature [17-19,31,32, 

36,37] that in general, cold deformation decreases corro-

sion resistance of steels. It is reflected in higher values of 

corrosion current density (Icorr). 

A bimodal distribution of grains had a negative 

influence on corrosion resistance of the X4MnSiAlNbTi27-

4-2 steel. Supersaturated specimens showed a mean value 

of corrosion current density of about 0.03 mA/cm2 (Fig. 6). 

The mean value of corrosion potential was about -430 mV.  

Pitting behaviour was studied by SEM and EDS 

techniques. Selected results of the analysis are shown in 

Figs. 7 and 8. A number of corrosion pits formed in the 

thermomechanically treated X4MnSiAlNbTi27-4-2 steel 

was quite small. They were mostly distributed at grain 

boundaries. A few pits are located within the austenite 

grains (Fig. 7a). Results of EDS analysis revealed that 

corrosion pits initiated at single MnS, AlN and at complex 

MnS+AlN inclusions (Fig. 7b). Corrosion pits nucleated 

also at complex oxides containing Mn, Al and Si (Fig. 7c). 

The cold deformed X6MnSiAlNbTi26-3-3 steel pos-

sessed single and complex inclusions consisting of MnS 

and AlN too. SEM observation revealed that corrosion 

damages are distributed at grain boundaries, inside the aus-

tenite grains and along the deformation bands. The amount 
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and corrosion potential (Ecorr) measured for both steels are 

related to several factors, such as: chemical composition of 

steel, heat treatment and plastic deformation. 

Chemical composition of steel, especially metallurgical 

cleanliness related to the amount of non-metallic inclu-

sions, has a significant effect on its corrosion resistance. 
Previous studies [10-13] demonstrated that non-metallic 

inclusions, mostly sulfide inclusions, affect the corrosion 

resistance of steel by providing pitting sites. That way, 

special focus should be paid to controlling the amount of 

sulfur content during metallurgical processes. Results of 

our earlier study [38] showed that X4MnSiAlNbTi27-4-2 

steel possesses a higher sulfur content (0.017 wt.%) than 

X6MnSiAlNbTi26-3-3 steel – 0.013 wt.%. The higher 

sulfur content can also affect the corrosion resistance of 

steel. The mean value of corrosion current density detected 

for the steel containing a lower Al amount was higher  

than that one recorded for X6MnSiAlNbTi26-3-3 steel 

(Table 2). 

The amount of MnS inclusions depends primarily on 

the sulfur content, thus the lower corrosion resistance of 

X4MnSiAlNbTi27-4-2 steel was observed. Park and Kwon 

[39] found that a size of MnS inclusions increased with the 

increase of  Mn concentration in Fe-18Cr-6Mn and Fe-

18Cr-12Mn steels. Therefore, corrosion behaviour of the 

steel with lower Al content could be also accelerated (to  

a lesser extend) by the higher Mn content in this steel. It is 

reported that [11,40] AlN inclusions are characterized by 

higher corrosion resistance than MnS inclusions. Results of 

EDS analysis showed that AlN inclusions were present in 

both steels. The X6MnSiAlNbTi26-3-3 steel is characteri-

zed by higher Al content. Thus, better corrosion resistance 

of this steel can be also probably related to higher amount 

of AlN inclusions (and smaller quantity of MnS inclu-

sions). Based on our previous results of potentiodynamic 

tests [9,10] it can be observed that corrosion pits did not 

form on Al2O3 inclusions during corrosion tests in 0.1M 

NaOH in opposite to 3.5% NaCl solution. Park et . al. [40] 

reported that Al2O3 inclusions have better corrosion resi-

stance than MnS and AlN inclusions. Therefore, it can be 

concluded that 0.1M NaOH is less aggressive corrosion 

solution for high-Mn steels. Better corrosion resistance  

of the X6MnSiAlNbTi26-3-3 steel is attributed to higher  

Al and lower Si contents in comparison to the 

X4MnSiAlNbTi27-4-2 steel (Table 2).  

A type of heat treatment and cold deformation influence 

the corrosion behavior of steel. Corrosion pits usually are 

formed in places of high dislocation density: grain 

boundaries, twins and deformation bands. These regions 

are particularly vulnerable for pit nucleation. The larger 

amount of deformation twins present in the microstructure 

of the cold deformed steels contributes to lowering their 

corrosion resistance due to the difference in potentials 

between the matrix and twins. They create local corrosion 

cells. That is why the cold deformed specimens were chara-

cterized by higher corrosion current density in comparison 

to the thermomechanically processed specimens. 

Di Schino et al. [33] and Abbasi Aghuy et al. [34] 

reported that corrosion resistance of steel is also related to 

its grain size. The grain refinement may change the electro-

chemical behaviour of metal as a consequence of variation 

in grain boundary density. Ralston et al. [41] suggested that 

the impact of grain refinement on corrosion resistance 

depends on the ability of surface to passivation. For the 

active conditions, reduction in the alloy grain size deterio-

rates the corrosion resistance whereas in an environment at 

which passivity could be established, grain refinement 

causes the improvement of corrosion resistance. Abbasi 

Aghuy et al. [34] observed that in austenitic 304L stainless 

steel pitting potential is not affected by grain refinement. 

Moreover, grain refinement decreases the number of 

corrosion pits. Relatively lower frequency of pits formation 

was explained based on the ability of grain boundaries to 

form a more strong passive film. More fine-grained 304L 

steel has a high density of grain boundaries for forming 

passive layers containing more chromium. Results of the 

present experiments indicated that thermomechanically 

rolled samples showed higher corrosion resistance than 

supersaturated specimens. The highest mean value of 

corrosion current density Icorr was detected for cold 

deformed specimens. Di Schino et al. [33] observed that in 

stainless steel a pitting corrosion rate decreased with decre-

asing grain size, while the uniform corrosion resistance is 

impaired by grain refining. Based on previous reports 

[33,34] it can be concluded that a dominant type of 

corrosion of investigated high-Mn steels in 0.1M NaOH 

solution is uniform corrosion without passivation. The 

general corrosion is accompanied by a small number of 

corrosion pits. 

 

 

5. Conclusions 
 

Corrosion behaviour of high-Mn austenitic steels is  

a complex problem related to numerous material and 

processing factors. The effects of chemical composition 

and plastic deformation on the corrosion properties in 

alkaline (0.1M NaOH) solution were studied. The 

following conclusions can be drawn: 

 both X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 

steels of different Al and Si contents were characterized 

5.  Conclusions
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by relatively high corrosion resistance in 0.1M NaOH, 

independently of their state: solution-treated, thermo-

mechanically rolled, cold strained; 

 corrosion pits nucleating preferentially on single and 

complex non-metallic inclusions consisting of MnS and 

AlN accelerate the uniform corrosion; 

 corrosion resistance of high-Mn steels is related to the 

type and amount of non-metallic inclusions. The higher 

contents of manganese, sulfur and silicon combined 

with a lower content of aluminium is reflected in the 

worse corrosion resistance of the X4MnSiAlNbTi27-4-2 

steel; 

 corrosion damages were distributed mostly at grain 

boundaries and within deformation bands; 

 cold deformation had the highest effect on the reduction 

of corrosion resistance of investigated steels. Thermo-

mechanically treated and supersaturated specimens 

showed lower values of corrosion current density and 

consequently less amount of corrosion damage.  
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