
62 62

Volume 82 

Issue 2

December 2016

Pages 62-69 

International Scientific Journal

published monthly by the 

World Academy of Materials 

and Manufacturing Engineering

© Copyright by International OCSCO World Press. All rights reserved. 2016

Neural networks model for prediction 

of the hardness of steels cooled from 

the austenitizing temperature

J. Trzaska

Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 

ul. Konarskiego 18a, 44-100 Gliwice, Poland

Corresponding e-mail address: jacek.trzaska@polsl.pl

 

ABSTRACT

Purpose: The paper presents the new neural networks model making it possible to estimate 
the hardness of continuously-cooled steel from the austenitizing temperature.

Design/methodology/approach: The method proposed in the paper employs two 
applications of the neural networks of: classification and regression. Classification and 
consists in determining the value of dichotomous variables describing the occurrence 
of: ferrite, pearlite, bainite and martensite in the microstructure of a steel. The values of 
dichotomous variables have been used for calculating steel hardness. The other task is 
regression, which aims at calculating the steel hardness.

Findings: The presented neural networks model can be used only in the range of 
concentrations of alloying elements shown in this paper.

Practical implications: The model worked out makes it possible to calculate hardness 
for the steel with a known chemical composition.  This model deliver important information 
for the rational selection of steel for those parts of the machines that are subjected to the 
heat treatment. The presented model make it possible the analysis of the interaction of the 
chemical composition on the hardness curves of the steel cooled from the austenitizing 
temperature.

Originality/value: The paper presents the method for calculating hardness of the 
structural and engineering steels, depending on their chemical composition, austenitizing 
temperature and cooling rate.
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METHODOLOGY OF RESEARCH, ANALYSIS AND MODELLING

1. Introduction 

 

The recent years have seen a considerable progress as 

regards the methods and tools allowing for modelling and 

simulation of the technological processes of 

manufacturing, processing and shaping the operating 

properties and structure of materials. Computer aided 

modelling is present both in research and in industrial 
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practice. It is a relatively cheap and effective method of 

optimising, among others, the chemical composition and 

conditions of technological processes, making it easier to 

obtain desired characteristics of materials. Modelling of 

heat treatment requires an analysis of many inter-related 

factors that influence the process and concentrates on 

comprehensive solutions and selected issues. The most 

popular numeric methods in modelling technological 

processes are characterised by a high level of flexibility, 

allow for an analysis of the issue in complex geometry 

objects and taking into account changes of thermo-

physical parameters [1]. Aside from mathematical 

modelling and the numerical methods related to it,  

bio-inspired methods are used increasingly frequently.  

The increasing popularity of artificial intelligence and 

computational intelligence methods in many fields of science 

and engineering is also reflected by the area of materials 

engineering [2-7]. Use of hybrid methods is a visible trend 

related to modelling in materials engineering [8,9]. 

Selection of steel for construction elements and machines 

parts requires analysis of working conditions and assuring 

appropriate values, taking into account their changes in 

profile. In case of structural and engineering steels the required 

values are obtained due to correctly adjusted chemical 

composition of steel and correct microstructure shaping 

resulting from thermal, thermal-plastic or thermal-chemical 

processing. Time-Temperature-Transformation diagram 

provides material information on the opportunity of obtaining 

the required steel microstructure and hardness depending on 

the course of its cooling from the austenitizing temperature. 

Knowledge of austenite transformation kinetics occurring 

during continuous cooling of steel from the austenitizing 

temperature presented at CCT diagrams helps determine the 

conditions of operations such as hardening, normalising or full 

annealing. The position and shape of austenite transformation 

curves marked on CCT diagrams depend primarily on the 

chemical composition of steel, the initial condition of material 

and the conditions of austenitizing [10].  

Attempts to modelling austenite transformation were 

and still are taken, in parallel to experimental studies [11]. 

A popular method of modelling in this area is multiple 

regression [12,13]. Although first equations describing 

temperatures of phase transformations were described by 

Payson and Savage [14] and Carapella [15] more than fifty 

years ago, new models are still proposed and might be used 

for various groups of steels. Many of the empirical 

formulae available in literature was collected in the work 

[16]. Aside from the multiple regression method, artificial 

neural networks are used as well. Results of the first works 

presenting neural models of temperatures of austenite 

transformations were published at the end of 20th century 

[17,18] and, similarly to the case of multiple regression, 

new solutions are still being presented. 

A popular model taken advantage for the purpose of 

the calculations of microstructural constituents and the 

hardness of a continuously�cooled steel from the 

austenitizing temperature is the Maynier model [19]. The 

Maynier model was developed upon the basis of the data 

acquired from approximately 300 CCT diagrams. The 

Maynier equations make it possible to calculate the 

typical cooling rates at the temperature of 700°C, for 

which in the microstructure of steels the following 

quantities are formed: 100%, 90% and 50% of martensite, 

90% and 50% of bainite, and also 90% and 100% of 

ferrite and pearlite respectively. In the literature, there are 

as well examples of the calculations of the hardness of a 

continuously�cooled steel upon the basis of the Jominy 

hardenability curve [20]. 

The first results of own research connected with 

modelling the hardness of steel cooled from the 

austenitizing temperature were presented in the papers 

[21,22]. For the purpose of developing the hardness model, 

the method of artificial neural network was applied.  

Complementing and extending the collection of 

empirical data made it possible to develop equations 

connecting the chemical composition of a steel, the cooling 

rate and the austenitizing temperature with the hardness of 

a steel. The collection of empirical data was prepared upon 

the basis of more than 500 CCT diagrams. In paper [2323], 

the equations applied for the purpose of the calculations of 

the hardness of continuously cooled structural steels upon 

the basis of the chemical composition as well as 

austenitizing temperature. In the hardness models 

developed with the application of multiple regression 

method [23], the significant variables were constituted by 

dichotomous variables describing the occurrence of: ferrite, 

pearlite, bainite and martensite in the microstructure of a 

steel. For the purpose of the calculation of those variables, 

the classifier developed with the application of the logistic 

regression method was applied. 

In the paper, the new neural networks model was 

presented making it possible to estimate the hardness of 

continuously-cooled steel from the austenitizing 

temperature.  

 

 

2. Data for calculation 

 

Modelling hardness with the application of the neural 

networks method required preparing a representative 

empirical data set. New results of research conducted for 

2.  Data for calculation
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commercial steel, experimental steel and model alloys as 

well as easier access to information offer significant 

opportunities in this regard. The data set was developed 

upon the basis of available publications containing 

experimentally-determined CCT diagrams for structural 

and engineering steels.  

A set of empirical data has been compiled by 

digitalising CCT diagrams. More than 500 structural and 

engineering steel have been analysed. The selection of 

variables is the result of the knowledge of the modelling 

process. However, the availability of data often requires the 

adoption of necessary simplifications. Vectors that contain 

examples used in modelling should include the values of all 

variables. The information connected with the austenite 

grain size and the austenitizing time was not provided on 

the majority of the CCT diagrams. For that very reason, it 

was necessary to adopt simplifications connected with the 

number of independent variables describing the model. It 

was presumed that the independent variables of the model 

would be the mass concentrations of the following 

elements: C, Mn, Si, Cr, Ni, Mo, V and Cu, the cooling 

rate, and also the austenitizing temperature.  

The data set applied for the purpose of developing the 

model contained 2845 cases. In addition to that, a 

verification data set was separated, and that data set was 

taken advantage of for the purpose of the numerical 

verification of the model. The verification data set 

contained 300 cases. Upon the basis of one CCT diagram, 

several vectors containing the values of independent 

variables and the respective value of hardness were 

developed.  

An analysis of the range of values of independent 

variables, in which the developed models can be used, was 

carried out. An analysis of data involving, among others: 

descriptive statistics, an analysis of outlying data, 

distribution of values for independent variables and an 

assessment of collinearity of independent variables allowed 

to define the scope of using the model. The maximum and 

minimum values of the mass fractions of elements were 

presented in Table 1. The additional conditions, relevant to 

the sums of the mass fractions of selected elements, were 

presented in Table 2. 

The data set used to develop the model by the neural 

networks was divide into four subsets such as: training, 

validating, testing, and verifying. Allocation of data to the 

particular subsets was done randomly. The data from a 

training set were used for determining the values of 

weights in the training process. The validating set was used 

for checking the model during establishing the values of 

weights, the testing and verifying sets was used for 

verifying the model when the network training was 

completed. For hardness HV model the numbers of cases in 

the sets: training, validating, testing and verifying one were 

respectively: 1405, 550, 550, 300. 

 

 

Table 1. 

Ranges of mass concentrations of elements  

R
an

g
e Mass fractions of elements, % 

C Mn Si Cr Ni Mo V Cu 

min 0.10 0.25 0.13 0 0 0 0 0 

max 0.68 1.82 1.68 2.3 3.69 1.05 0.38 0.38 

average 0.32 0.79 0.33 0.72 0.75 0.17 0.02 0.04 

SD 0.13 0.34 0.27 0.56 1.01 0.21 0.06 0.08 

SD – standard deviation 

 

 
Table 2. 

Additional conditions for limiting the scope of model 

application 

 

Mass fractions of elements, % 

Mn+Cr Mn+Cr+Ni Cr+Ni Mn+Ni 

max 3.6 5.6 5.3 4.5 

 

 

3. Method and results 

 

In the hardness models developed with the application 

of the artificial neural networks method [21] as well as the 

multiple regression and logistic regression method [23], the 

significant variables were constituted by dichotomous 

variables describing the occurrence of: ferrite, pearlite, 

bainite and martensite in the microstructure of a steel. The 

values of dichotomous variables obtained that way, 

identifying the transformations occurring during cooling 

with assumed speed have been used for calculating steel 

hardness. Therefore, the hardness model is based on the 

assumption that it is necessary to solve two types of tasks 

for their correct calculation. One task is classification and 

consists in determining the scope of cooling rate for 

individual phase transformations. The other is regression, 

which aims at calculating the steel hardness. The 

classification task defined that way might be equated with 

an answer to the question whether austenite-ferrite, 

austenite-perlite, austenite-bainite and austenite-martensite 

3.  Method and results
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transformations occur during cooling rate with known 

speed. The classifiers have been drawn up using the 

artificial neural networks method. The dichotomous 

dependent variable Wx describing the occurrence in the 

microstructure of the steels of the following: ferrite (Wf), 

pearlite (Wp), bainite (Wb) and martensite (Wm). The four 

classifiers based on neural networks were developed. 

Independent variables in the models were constituted by 

the mass concentrations of elements, the austenitizing 

temperature (TA) and the cooling rate (vc).  

To develop the relationship between the chemical 

composition, austenitizing temperature, cooling rate, and 

hardness of the steels the feedforward neural networks 

(MLP - Multi-Layer Perceptron) were used. An MLP is the 

most universal type of neural network intended for solving 

tasks related to classification as well as regression [6]. 

Neural networks design consists of determining the 

parameters characterizing the network and then training as 

well as testing the network. In the case of MLP-type 

network basic parameters include the number of hidden 

layers and number of neurons in the particular layers,  

a variable scaling method, error functions, activation 

functions, and postsynaptic potential functions, method and 

parameters of training. The number of hidden layers and 

number of neurons in these layers, and also method and 

training parameters were specified analyzing the effect  

of these quantities on the neural network quality 

assessment coefficient values for the training and 

validating data sets as well as test set. The number of 

training epochs was determined by observing the network 

forecast error for the training and validating data sets. 

Methodology for the design of artificial neural networks 

was presented in work [6]. 

Information on neural network models used for 

determining the types of structural constituents occurring in 

the steel after the completed cooling process at a particular 

rate were compiled in Table 3. 

The correctness of the classifiers was assessed upon the 

basis of the coefficient of correct classifications as well as 

the area under the ROC (Receiver Operating 

Characteristic) curve. The coefficient of correct 

classifications which was being determined as the quotient 

of correctly classified cases and all the examples in the data 

sets. The ROC curve expresses the neural network 

sensibility (second class classified correctly) as a function 

of the incorrectly classified first class. In case of the „ideal” 

classifier, the area under the ROC curve assumes value 

of 1. In case of random classifications, the area under the 

ROC curve assumes value of 0.5. The statistics of the 

classifiers were presented in Table 4. 

Table 3. 

Specifications of the developed classifiers based on neural 

networks 

Output 

variable 

Input 

variables 

Neural 

network 

type 

Neural 

network 

structure 

Training 

method/No of 

epochs 

Wf C, Mn, 

Si, Cr, 

Ni, Mo, 

V, Cu, 

TA, vc 

MLP 

10-8-1 BP/50,CG/330 

Wp 10-8-1 BP/50,CG/119 

Wb 10-10-1 BP/50,CG/188 

Wm 10-6-1 CG/100 

BP – back propagation method; CG – conjugate gradients 

method 

 

Table 4. 

Quality assessment coefficients for models, used as 

classifiers for determining the types of occurring 

transformations 

 

Data sets 

Transformation areas, 

output variable 

Ferritic 

Wf 

Pearlitic

Wp 

Bainitic

Wb 

Martensitic

Wm 

Coefficient 

of correct 

classifications, 

% 

training 0.92 0.92 0.86 0.89 

validating 0.91 0.92 0.86 0.86 

testing 0.89 0.91 0.84 0.86 

ROC 

training 0.97 0.97 0.93 0.95 

validating 0.97 0.97 0.92 0.94 

testing 0.96 0.97 0.92 0.93 

 

Moreover, the hardness of steel was described in 

addition to that with the application of two neural networks 

which may be applied for a martensitic structure (HVm) and 

also for the ferritic - pearlitic one (HVf-p). The hardness 

models for a martensitic structure, and for the ferritic- 

pearlitic one, may be applied after obtaining the 

appropriate results of classifications. In the case of 

uncertain results of classifications, it is a better solution to 

apply the general model. Information on neural network 

models used for calculating the hardness occurring in the 

steel after the completed cooling process at a particular rate 

were presented in Table 5. 

The hardness models were being assessed upon the 

basis of: the mean absolute error, the standard deviation of 

error, correlation coefficient and also the standard deviation 

quotient of the calculation error, as well as the standard 

deviation of the dependent variable value. The statistics of 

the hardness models were presented in Table 6. 
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Table 5. 

Specifications of the neural networks used for calculating 

the steel hardness 

Output 

variable 

Input  

variables 

Neural 

networ

k type 

Neural 

network 

structure 

Training 

method/No 

of epochs 

HV 

C, Mn, Si, Cr, 

Ni, Mo, V, Cu, 

TA, vc, Wf, Wp, 

Wb, Wm 

MLP 

14-10-1 
BP/50, 

CG/489 

HVm 
C, Mn, Cr, Ni, 

V, Cu, vc, 
7-10-1 

BP/50, 

CG/184 

HVf-p 

C, Mn, Si, Cr, 

Ni, Mo, V, TA, 

vc 

9-9-1 CG/189 

 
Table 6. 

Values of statistics used to evaluate the quality of the 

developed models 

 Data sets Mean 

absolute 

error, 

HV 

Standard 

deviation 

of the 

error, HV 

Ratio of 

standard 

deviations 

Pearson’s 

correlation 

coefficient 

HV 

training 31.5 45.4 0.28 0.96 

validating 33.8 47.5 0.29 0.96 

testing 33.1 48.9 0.30 0.95 

HVm 

training 28.8 36.8 0.37 0.93 

validating 28.7 36.9 0.34 0.94 

testing 24.9 31.1 0.28 0.96 

HVf-p 

training 17.1 21.0 0.46 0.89 

validating 17.5 22.0 0.43 0.90 

testing 18.2 22.3 0.44 0.90 

 
The hardness model was numerically verified by means 

of comparison between the hardness curves determined 

experimentally and the calculated ones. The calculations 

were performed for data which were not taken advantage of 

for the purpose of developing the neural network models. 

The verification data set was composed of 25 chemical 

compositions of structural steel. The examples of the 

results were presented in Figures 1-3. The comparative 

plots for the experimental and calculated hardness were 

presented in Figures 4-6. Scatter plots of the experimental 

vs calculated values of the steel hardness were calculated 

using the HV, HVm as well as HVf-p models. 

 
 

Fig. 1. The comparison of the experimental and calculated 

hardness curves for the steels with a mass concentration of 

elements: 0.14%C, 1.2%Mn, 0.1%Si, 0.15%Cr, 0.48%Ni, 

0.15%V, 0.15%Cu austenitised at temperature of 900°C 
 

 
 

Fig. 2. The comparison of the experimental and calculated 

hardness curves for the steels with a mass concentration of 

elements: 0.22%C, 0.66%Mn, 0.3%Si, 0.56%Cr, 0.15%Ni, 

0.44%Mo, 0.18%Cu austenitised at temperature of 890°C 
 

 
 

Fig. 3. The comparison of the experimental and calculated 

hardness curves for the steels with a mass concentration of 

elements: 0.38%C, 0.76%Mn, 0.26%Si, 0.9%Cr, 0.26%Ni, 

0.17%Cu austenitised at temperature of 880°C 
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Fig. 4. Comparison of the experimental hardness with 

values out of the testing set calculated using the HV model 

 

 
 

Fig. 5. Comparison of the experimental hardness with 

values out of the testing set calculated using the HVm 

model 

 

The results of the calculation of the steel hardness are 

burdened with some errors. Those results both from 

simplifications applied in the course of modelling, as well 

as from the specific character of empirical data. The data 

set was prepared based on the published CCT diagrams. 

Every vector of data taken advantage of in the course of the 

training of the neural network has to contain the values of 

all variables. Information relevant to the austenitizing time, 

and also to the austenite grain size, was not being provided 

on the majority of the CCT diagrams, and, for that very 

reason, it was not taken under consideration in the model. 

A significant problem is constituted as well by the graphic 

form of data and errors connected with making CCT 

diagrams and printing them, and also errors resulting from 

the digitalization of data. Moreover, simplifications 

concerning the chemical composition of the steels are often 

used. In this case, only mass concentrations of the basic 

elements are presented. 
 

 

 
 

Fig. 6. Comparison of the experimental hardness with 

values out of the testing set calculated using the HVf-p 

model 

 

 

4. Conclusions 

 

The model worked out makes it possible to calculate 

hardness for the steel with a known chemical composition. 

The presented neural networks model can be used only in 

the range of concentrations of alloying elements shown in 

the Table 1. Simultaneously, the conditions set out in the 

Table 2 should be complied with. The hardness model for 

structural and engineering steels, continuously cooled from 

the austenitizing temperature, was developed as well with 

the application of the multiple regression and logistic 

regression method [23]. 

The presented model make it possible the analysis of 

the interaction of the chemical composition on the hardness 

curves of the steel cooled from the austenitizing 

temperature. This model deliver important information for 

4.  Conclusions
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the rational selection of steel for those parts of the 

machines that are subjected to the heat treatment. 

New models describing the hardness of steels have been 

applied for the purpose of modification of a computer 

program [24] for predictions of CCT diagrams for 

structural and engineering steels. Because of the limited 

publication volume, only the most important information 

characterising the developed model was presented. The 

detailed problem description was presented in [25]. 

Presented method might be used for other alloys and 

similar calculating tools might be developed for these 

alloys when having the required experimental data. 

Computer aided modelling is a relatively cheap  

and effective method of optimising, among others, the 

chemical composition and conditions of technological 

processes, making it easier to obtain desired characteristics 

of materials. Computer aided calculations help reduce costs 

– also due to decreasing the number of necessary 

experiments. 
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